Base 2 To Base 16

Base 2 definition (Binary):

          The base2 is binary numbers the binary numbers are the 0 and 1. it is used to basic language of the computer. It is calculated by the divided by 2 and get the remainders this called the base 2(binary).

Base 16 definition (Hexadecimal):

          The base 16 is hexadecimal numbers the hexadecimal are the 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. These are the hexadecimal Numbers.

 

Examples on base 2 to base 16:

 

Example 1 on base 2 to base 16:

Consider base2: 01011110101101010010

STEP 1

Break the Byte into 'quartets'

          0101  1110  1011 0101  0010

STEP 2

Use the table above to covert each quartet to its Hex equivalent

5EB5216     

Therefore

010111101011010100102 =0101  1110  1011 0101  0010

                                 =    5           E           B      5          2

                                 =  5EB5216                         

Example 2 on base 2 to base 16:

Consider Binary:

1000100100110111 

STEP 1

Break the Byte into 'quartets'

 1000  1001  0011  0111

STEP 2

Use the table above to covert each quartet to its Hex equivalent

 8937

Answer:

Therefore ... 1000100100110111 = 893716

Example 3 on base 2 to base 16:

Consider Binary

11010101

STEP 1

Break the Byte into 'quartets'

 1101  0101

STEP 2

Use the table above to covert each quartet to its Hex equivalent

  D5

Answer:

11010101 = D516

Example 4 on base 2 to base 16:

Consider Binary

1111110001000001

STEP 1

Break the Byte into 'quartets'

 1111  1100  0100 0001

STEP 2

Use the table above to covert each quartet to its Hex equivalent

 FC41

Answer:

 1111110001000001 = FC4116

Example 5 on base 2 to base 16:

Consider Binary

10101010000010001001

STEP 1

Break the Byte into 'quartets'

1010 1010 0000 1000 1001

STEP 2

Use the table above to covert each quartet to its Hex equivalent

AA089

Answer:

10101010000010001001= AA08916

Example 6 on base 2 to base 16:

Consider Binary

10101010000010001001001

STEP 1

Break the Byte into 'quartets'

1010 1010 0000 1000 1001 001

STEP 2

Use the table above to covert each quartet to its Hex equivalent

 550449

Answer:

10101010000010001001001 = 55044916

 

Example 7 on base 2 to base 16:

Consider Binary

001010100011101011

STEP 1

Break the Byte into 'quartets'

0010 1010 0011 1010 11

STEP 2

Use the table above to covert each quartet to its Hex equivalent

A8EB

Answer:

001010100011101011= A8EB16

Example 8 on base 2 to base 16:

Consider Binary

10010101011010101010010

STEP 1

Break the Byte into 'quartets'

1001 0101 0110 1010 1010 010

STEP 2

Use the table above to covert each quartet to its Hex equivalent

4AB552

Answer:

10010101011010101010010 = 4AB55216

Example 9 on base 2 to base 16:

Consider Binary

01010111000010101010

STEP 1

Break the Byte into 'quartets'

0101 0111 0000 1010 1010

STEP 2

Use the table above to covert each quartet to its Hex equivalent

570AA

Answer:

01010111000010101010 = 570AA16